
INTRODUCTION

OVER THE PAST 8 YEARS it has become evident that iso-
forms of the leukocyte NADPH oxidase, which gener-

ates the respiratory burst in granulocytes, are the predomi-
nant cellular source of oxygen-derived free radicals (reactive
oxygen species [ROS]) in the vasculature.

In white blood cells, NADPH oxidase consists of several
cytoplasmic subunits and two membrane-bound subunits,
p22phox and gp91phox (the latter is now termed nox2), which
form a cytochrome b558 complex in the presence of heme.
Upon leukocyte activation the cytoplasmic subunits p47phox,
p67phox, and p40phox as well as Rac-2 translocate to this
membrane-bound protein complex and facilitate the transfer
of electrons from NADPH to molecular oxygen, leading to
the generation of the superoxide anion (O2

2) (for review 2, 3).
As initially reviewed by Jones et al. (43) in 1995, different

subunits of the leukocyte NADPH oxidase system are also
present in nonphagocytic cells.

EXPRESSION OF NADPH OXIDASE IN
VASCULAR CELLS

Particularly in the vasculature, our understanding about
the isoforms of the leukocyte NADPH oxidase and their role
in cellular O2

2 formation has greatly advanced since the initial
reports of an angiotensin II-inducible p22phox-containing
NADPH oxidase in vascular smooth muscle cells (VSMCs) by
Griendling and co-workers (31, 90). Meanwhile, isoforms of
the leukocyte NADPH oxidase have been identified in all
types of vascular cells.

Since vascular endothelial cells are derived from heman-
gioblasts (73, 97), the common precursors of leukocytes and
endothelial cells (14), several hematopoetic transcription fac-
tors (47) and, consequently, all subunits of the leukocyte NADPH
oxidase (62) are found in this cell type (6, 44). As demon-
strated using cells and vascular preparations from NADPH
oxidase knock-out mice, the agonist-induced O2

2 formation
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in endothelial cells is critically dependent on the nox2 (29)
and p47phox (55) subunit of the leukocyte NADPH oxidase.

In VSMCs the situation is more complex for several rea-
sons. Homologues of gp91phox/nox2 have been cloned (50,
83) and two of these newly discovered proteins, nox1 and
nox4, are expressed in VSMCs from conduit vessels (53, 63,
80, 85). In VSMCs derived from human arterioles, however,
nox2 mediates O2

2 generation, whereas nox1 is undetectable
(89). In addition to the nox homologues, p22phox has been
detected by Western blot analysis and reverse transcription–
polymerase chain reaction (RT-PCR) (29, 85, 89, 90) and
shown to be involved in agonist-induced O2

2 formation of
VSMCs (9, 90, 93). p67phox, although essential for the activ-
ity of the leukocyte NADPH oxidase (2), is undetectable in
VSMCs (67). A homologue to p67phox will most probably be
identified in VSMCs as in the absence of this subunit, no
transfer of electrons from NADPH to oxygen can occur. With
regards to p47phox, experiments carried out in vascular
preparations and smooth muscle cells (SMCs) from p47phox
2/2 mice (5, 8, 39, 51, 54) as well as one study using
p47phox neutralizing antibody (77) suggest that this subunit
contributes to NADPH oxidase activity in SMCs. It should,
however, be mentioned that conflicting observations regard-
ing the expression of p47phox mRNA and protein have been
made in cultured SMCs. p47phox was easily detected by
Western blot in some studies (5, 67, 77), but Lavigne et al.
(54) demonstrated that p47phox expression is rapidly lost
after cell passage, and became undetectable in cells of higher
passage (8). In this context, the very recent demonstration of
p47phox and p67phox homologues in colon cells that form an
oxidase complex with nox1 is exciting and may prompt to-
wards a role of these proteins in the VSMC oxidase (4, 26).
Although this aspect has not yet been extensively studied in
vascular cells, mRNA for the mentioned p47phox homologue
is detectable by RT-PCR in VSMCs (author’s unpublished
data).

In the adventitia, which is composed of fibroblasts, peri-
cytes, nerves, and inflammatory cells such as mast cells, plasma
cells, and monocytes and adipocytes, a leukocyte-type NADPH
oxidase has been observed and demonstrated to be function-
ally active (for review see 70). A role of p67phox for vascular
O2

2 generation has been demonstrated in this tissue, as well
as in f ibroblasts (15, 65, 66).

THE FUNCTION OF NADPH OXIDASE IN
VASCULAR CELLS

Most enzymes capable of generating oxygen-derived radi-
cals, such as cytochrome P450 monooxygenases (7, 23, 79),
xanthine oxidase (81) and nitric oide (NO) synthase (NOS)
(69, 99), usually do so under some kind of stress condition
such as depletion of cofactors or partial oxidation of the en-
zyme (11). In contrast, the sole function of the leukocyte-type
NADPH oxidase is the generation of O2

2. In leukocytes, O2
2

plays an integral role in the bactericidal function of the cell as
O2

2 helps to control the pH in the phagosomes to keep the
proteolytic enzymes active (for review see 42). It also serves

after dismuting to H2O2 as substrate for peroxidases, in par-
ticular myeloperoxidase, to form small bacteriotoxic mole-
cules such as HClO or hydroxyl radicals (·OH). Finally, O2

2

also reacts with NO, leading to the formation of toxic perox-
ynitrite (for review see 34).

The question why nonphagocyte cells express an O2
2 gen-

erating enzyme is unanswered. It might be that the nonphago-
cytic NADPH oxidase is a remnant or precursor of the leuko-
cyte-like defense system in cells not specialized in bacterial
killing. In this context, it is certainly worth mentioning that
osteoclasts (102) and epithelial cells such as colon cells (13,
83), gastric pit cells (48, 87), or tubulus cells in the kidney
(25, 78) have relatively high levels of NADPH oxidases com-
pared with mesenchymal cells and that expression of the en-
zyme appears to be increased by differentiating or inflamma-
tory stimuli (45, 87).

Alternatively, the NADPH oxidase system has evolved to
provide a system for uniform reactions in response to intra-
cellular stress. Cells in situ are continuously exposed to po-
tentially harmful environmental stress arising from different
physico-chemical stimuli, such as radiation and oxygen toxic-
ity. Therefore, antioxidative defense systems as well as redox-
sensitive signaling cascades have developed [an issue exten-
sively reviewed by others (for example, 22, 32, 40, 46, 60, 64,
88)]. As a consequence of the effects of redox modulation on
cellular function, oxygen-derived free radicals at low, non-
toxic concentration have to be considered as second messen-
gers. The NADPH oxidase as a system generating O2

2 will
affect the cellular redox milieu. Thus, one could speculate
that the oxidase system serves as a convergent signaling path-
way to activate the “stress” response program in reaction to
hormonal stimuli. Therefore, it is imperative to realize that
the non-leukocyte NADPH oxidase does not generate cyto-
toxic levels of ROS but rather modulates the cellular redox
milieu. Moreover, compartmentalization of NADPH-dependent
ROS formation will further direct the radicals to certain tar-
get structures, although our current methods for the measure-
ment of oxidative stress do not allow us to address this aspect
in detail.

Many hormones, such as angiotensin II (31, 90), platelet-
derived growth factor (PDGF) (53, 54, 59), and thrombin (9)
as well as cytokines like tumor necrosis factor (TNF) a (19,
24) have been demonstrated to activate NADPH oxidase in
vascular tissue. It is, however, trivial that these substance not
only activate NADPH oxidase but also multiple other ele-
ments inside and outside the cell. Angiotensin, for example,
activates protein kinase C (PKC), extracellular signal-regulated
kinase (ERK) 1/2, and p38 mitogen-activated protein (MAP)
kinase and increases the intracellular calcium concentration
(for review see 75). Although all of the above-mentioned ele-
ments are affected by oxidative stress (46, 88), only the acti-
vation of p38 MAP kinase is mediated by O2

2 derived from
NADPH oxidase (91).

Consequently, for the understanding of the role of NADPH
oxidase in cardiovascular pathophysiology and in order to
identify the enzyme as a potential target for cardiovascular
drug development, the effects specifically mediated by the
oxidase have to be identified. This concern, however, is ham-
pered by the lack of specific inhibitors.
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STRATEGIES TO SPECIFICALLY ALTER
NADPH OXIDASE ACTIVITY

The vast majority of the studies suggesting NADPH oxi-
dase-mediated effects have been carried out using flavin in-
hibitors such as diphenylene iodonium (DPI) (16). Since this
compound nonspecifically blocks almost all flavin-containing
enzymes such as NOS (96, 100), cytochrome P450 monoxy-
genases (23, 61), xanthine oxidase (76), and enzymes of the
respiratory chain (56), studies using DPI as the only approach
to inhibit NADPH oxidase have to be interpreted with great
caution. In addition to DPI, only the vanillinoid apocynin (86),
which by some authors is considered to be an established
NADPH oxidase inhibitor, is commercially available, and in-
creasingly often used. The specificity of apocynin has, how-
ever, not been carefully studied, and very high concentrations
of the compound (600 µmol/L) are required to reliably inhibit
NADPH oxidase (82). Although nontoxic in animal experi-
ments, it has to be expected that at such concentrations ef-
fects unrelated to the inhibition of NADPH oxidase occur
(37). Indeed, apocynin has been shown to block the formation
of thromboxane A2 in porcine pulmonary macrophages (21).
More importantly, apocynin enhanced g-glutamylcysteine syn-
thetase activity in A549 cells leading to increased glutathione
synthesis and thus at least in chronic experiments to antiox-
idative effects unrelated to NADPH oxidase (52). Finally, in
human VSMCs apocynin at a concentration of 600 µmol/L
has direct effects on gene expression and MAP kinase phos-
phorylation (author’s unpublished data, 2002). Because of these
limitations, the effects of DPI and apocynin are usually com-
pared with those of selective inhibitors of NOS, xanthine oxi-
dase, and the respiratory chain. Although this approach is rea-
sonable to pin down potential sources of O2

2, one has to be
aware of the fact that it will never be possible to exclude all
relevant O2

2-generating enzymes. More importantly, because
of the pronounced interference of DPI with many enzymes in
the cell in addition to those generating O2

2, the substance yields
unpredictable results at the levels of signaling, transcription
factor binding, and gene expression. For instance, incubation
of resting vascular SMCs with DPI for 4 h leads to a pronounced
induction of monocyte chemoattractant protein-1 (MCP-1),
vascular endothelial growth factor (VEGF), and tissue factor
mRNA (author’s unpublished data), which is probably a con-
sequence of the DPI-induced NADPH oxidase-independent
activation of the transcription factor activator protein-1 (AP-1),
as demonstrated recently (74).

Consequently, suppression of expression or blockade of
different oxidase subunits using molecular biology tools ap-
pears to be the only way to specifically analyze the involve-
ment of this enzyme in signaling and gene expression. In this
respect, several different approaches have been taken so far:
Phosphothioate-modified antisense oligonucleotides have fre-
quently been used to attenuate the expression of p22phox,
nox1, and gp91phox/nox2 in VSMCs, mesangial cells, car-
diomyocytes, endothelial cells, and fibroblasts (9, 36, 89, 94,
98). Transfection of full-length antisense oligonucleotide against
p22phox, nox1, and nox4 was performed in SMCs, fibroblasts,
and renal cells (53, 78, 83, 90). SMCs and endothelial cells

derived from p47phox 2/2 mice were used to study the role
of this subunit in radical generation in cultured cells (5, 8, 54,
55). Moreover, p22phox and p47phox, respectively, were blocked
by electroporation of neutralizing antibodies (9, 77). Finally,
dominant-negative p47phox (101) and a peptide inhibitor (41,
57, 71) were developed to block the interaction of p47phox
with the nox isoforms. As a consequence of these studies, an
involvement of NADPH oxidase in agonist-induced O2

2 for-
mation has been established for many scenarios.

REGULATION OF GENE EXPRESSION BY
NADPH OXIDASE-ACTIVATING AGONISTS

The effects of NADPH oxidase-dependent O2
2 formation

on signaling and gene expression, however, have been not ex-
haustively studied in vascular cells using these specific ap-
proaches. Most of the studies were performed using thrombin
as an agonist. Thrombin increases the O2

2 generation in VSMCs
(67) via a mechanism involving p22phox (9) and p47phox (5,
8). Using p22phox antisense oligonucleotides, as well as a
p22phox-neutralizing antibody or VSMCs cultured from
p47phox 2/2 mice, it could be demonstrated that the throm-
bin-induced expression of MCP-1 (8, 9), tissue factor (8, 38),
and plasminogen activator inhibitor 1 (PAI-1) (30) involves
NADPH oxidase-dependent O2

2 formation. Similar results
were published concerning thrombin-induced VEGF expres-
sion (8, 30). Accordingly, overexpression of nox1 increases
VEGF in fibroblasts (1). MCP-1 expression is controlled by
NADPH oxidase not only in SMCs but also in endothelial
cells, where serum starvation leads to the induction of this
protein via a pathway sensitive to the NADPH oxidase-blocking
peptide gp91ds-tat (58). The induction of MCP-1 by TNF a
can also be mediated by NADPH oxidase. However, non–
NADPH oxidase-induced ERK 1/2 activation in response to
this strong stimulus is also sufficient to induce MCP-1 in
VSMCs (17).

The potent mitogen PDGF is another strong agonist for
SMC O2

2 formation (59). The involvement of NADPH oxi-
dase for PDGF-induced radical generation has been demon-
strated using nox1-antisense transfected cells (53), p22phox
neutralizing antibody (49) and cells cultured from the aorta
of p47phox 2/2 mice (54). Furthermore, the PDGF-induced
expression of tissue factor (28) as well as of VEGF (8) is me-
diated by NADPH oxidase as demonstrated using antisense-
plasmid (8) and SMCs cultured from p47phox 2/2 mice (8).

Although the role of NADPH oxidase in angiotensin II-
induced O2

2 formation has been extensively demonstrated,
very few studies have addressed the role of the oxidase in an-
giotensin II-induced gene expression, as most authors largely
concentrated on the role of the oxidase in angiotensin II-
induced hyperplasia and hypertrophy (5, 10, 83, 92). For this
aspect, it is interesting to note that p22phox antisense oligonu-
cleotides inhibit the angiotensin II-induced expression of the
cell cycle regulator p27Kip1 in mouse renal tubular cells, pre-
venting hyperplasia (36). Furthermore, angiotensin II-induced
interleukin-6 expression could be inhibited using a p47phox
neutralizing antibody (77). Very recently, it has been demon-
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strated that the specific NADPH oxidase peptide inhibitor
gp91-ds-tat prevents angiotensin II-induced intercellular cell
adhesion molecule-1 expression in the rat aorta (57). Angiotensin
II-induced MCP-1 expression is also likely to be dependent
on NADPH oxidase-mediated O2

2 formation, so far only DPI
and apocynin have been used to address this issue (12).

SIGNALING PATHWAYS UNDERLYING
NADPH OXIDASE-INDUCED 

GENE EXPRESSION

Alterations in gene expression are primarily a consequence
of altered transcription factor binding. To date, no study has ad-
dressed the effect of specific inhibition of NADPH oxidase on
transcription factor binding, except for those carried out using
DPI. Nevertheless, it might be speculated based on the known
oxidase-activated kinases that at least the transcription factors
nuclear factor kB (NF kB) and AP-1 are partially controlled by
radicals generated from NADPH oxidase. In this context it has
been demonstrated very recently that SMCs from p47phox 2/2
mice exhibit an attenuated activation of NF kB DNA binding in
response to angiotensin II and AT1-receptor autoantibodies
(18). In addition, we have previously reported that the throm-
bin-induced expression of the transcription factor hypoxia-in-
ducible factor-1a (HIF-1a) is mediated by NADPH oxidase,
which controls expression of VEGF and PAI-1 (30).

With regard to the signaling upstream of transcription fac-
tors but downstream of NADPH oxidase, most work has fo-
cused on the different MAP kinase pathways as well as on
Akt/protein kinase B. Angiotensin II as well as thrombin acti-
vate ERK 1/2, p38 MAP kinase, and Akt in VSMCs. Although
ERK 1/2 phosphorylation can be elicited by exogenous ox-
idative stress, induced by H2O2, inhibition of NADPH oxi-
dase using the antisense technique had no effect on thrombin-
as well as angiotensin II-induced ERK 1/2 phosphorylation.
In contrast, agonist-induced activation of p38 MAP kinase
and Akt was suppressed by NADPH oxidase inhibition (9, 10,
91, 93). In line with this observation, transfection of nox1 an-
tisense also blocked angiotensin II-induced p38 MAP kinase
and AKT phosphorylation, but not that of ERK 1/2 (53). Sim-
ilar results were obtained in rat cardiomyocytes, using anti-
sense oligonucleotides against nox1 and p22phox, which also
inhibited p38 MAP kinase activation.

In contrast to these observations, lysophosphatidylcholine
(LPC)-induced ERK 1/2 phosphorylation in a VSMC line was
sensitive to dominant negative p47phox (101). Nevertheless,
the upstream pathways of LPC and angiotensin II are very
different, since LPC signaling occurs mainly via PKC, a well-
characterized redox-sensitive group of enzymes (for review
see 27). Thus, an NADPH oxidase-mediated activation of
PKC rather than ERK 1/2, which are downstream of PKC,
may underlie the LPC-induced ERK 1/2 phosphorylation.

Agonist-induced activation of c-Jun N-terminal kinase (JNK)
also appears to involve NADPH oxidases, as antisense oligonu-
cleotides against p22phox prevented angiotensin II-mediated
activation of JNK in VSMCs (93). In addition, a role of the
oxidase has been suggested for TNF a-induced JNK activa-
tion (33), but this study was performed in ECV-304 bladder

carcinoma cells, erroneously assumed to be an endothelial
cell line (20).

MECHANISMS OF NADPH OXIDASE-
INDUCED SIGNALING

The activation of downstream targets in agonist-induced
signaling of the NADPH oxidase is sensitive to antioxidants
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FIG. 1. Scheme of the signaling pathways leading to
NADPH oxidase-mediated gene expression in VSMCs. Ag-
onist stimulation with angiotensin II, thrombin, PDGF, or TNF
a leads to the induction and/or activation of NADPH oxidases
and the subsequent formation of O2

2, which scavenges NO or
rapidly dismutates to hydrogen peroxide (H2O2). H2O2 acti-
vates tyrosine kinases and inhibits phosphatases, a process that
leads to an enhanced phosphorylation of downstream kinases
such as p38 MAP kinase (p38 MAPK), Akt, JNK, or Janus ki-
nases (JAKs). One consequence of this process is the activation
of transcription factors such as NF-kB, AP-1, HIF-1a, and sig-
nal transducers and activators of transcription (STATs), which
leads to alterations in cellular gene expression. Via this path-
way, agonist-induction activation of NADPH oxidase increases
the expression of MCP-1, tissue factor, VEGF, vascular cell ad-
hesion molecular 1 (VCAM-1), PAI-1, and interleukin 6 (IL-6).
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such as tiron, vitamin C, and catalase, which indicates that
the downstream effects are a consequence of NADPH oxidase-
dependent oxygen radical formation. To address the question
how oxygen radicals affect signaling would certainly go be-
yond the scope of this review, and this topic will be addressed
or has been addressed (35) in detail by other review articles
published in this forum. On the level of signaling cascades,
oxygen radicals, in particular hydrogen peroxide, have been
shown to inhibit activity of specific phosphatases, leading to
the activation of protein tyrosine kinases, tyrosine kinase re-
ceptors, and serine–threonine kinases. This, however, is only
one aspect of ROS-mediated signaling and changes in the
redox milieu of numerous other signaling elements, including
GTPases, lipids, and transcription factors, will alter cellular
gene expression (22, 32, 35, 40, 46, 60, 64, 88).

Particularly in the vasculature another important aspect is
the NADPH oxidase-mediated scavenging of endothelial NO,
which leads to the formation of peroxynitrite. Numerous stud-
ies have demonstrated that the NADPH oxidase limits NO
bioavailability (29, 51, 72, 95) and controls peroxynitrite for-
mation (41, 95). There is no doubt that NO has an important
influence on vascular gene expression (68), but the specific
question whether NADPH oxidase indirectly via this pathway
affects signaling has not been studied.

CONCLUSION

NADPH oxidase plays an important role in modulating the
cellular redox state and in mediating agonist-induced gene
expression (Fig. 1). Nevertheless, the exact mechanism un-
derlying the oxidase-induced effects and those leading to pro-
liferation and hypertrophy in response to NADPH oxidase ac-
tivation are still incompletely understood. Future work will
identify transcription factors selectively activated by NADPH
oxidase-dependent mechanisms and will yield insight into the
differential effects of the novel gp91phox/nox2 homologues
on gene expression and cellular function.
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ABBREVIATIONS

AP-1, activator protein-1; DPI, diphenylene iodonium; ERK,
extracellular signal-regulated kinase; HIF-1a, hypoxia-inducible
factor-1a; LPC, lysophatidylcholine; MAP, mitogen-activated
protein; MCP-1, monocyte chemoatractant protein-1; NF kB,
nuclear factor kB; NO, nitric oxide; NOS, NO synthase; O2

2

superoxide anion; PAI-1, plasminogen activator inhibitor 1;
PDGF, platelet-derived growth factor; PKC, protein kinase C;
ROS, reactive oxygen species; RT-PCR, reverse transcrip-
tion– polymerase chain reaction; SMC, smooth muscle cell;
TNF, tumor necrosis factor; VEGF, fascular endothelial
growth factor; VSMC, vascular smooth muscle cell.
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